Exact Factorizations of G-crossed Braided Fusion Categories

Sargam Mondal

Mentors: Prof. Julia Plavnik and Prof. Monique Müller

October 13th, 2024 MIT PRIMES Conference

Sargam Mondal (MIT PRIMES-USA)

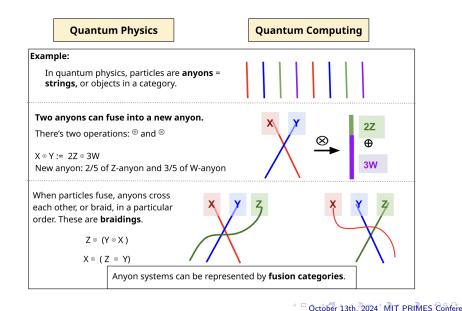
Factorizations in G-crossed categories

1/18

- Why study fusion categories?
- What is a category?
- Operations in categories
- Fusion categories
- Gradings
- G-crossed braided fusion categories
- Exact factorization
- Our theorem

October 13th. 2024 MIT PRIMES Confere

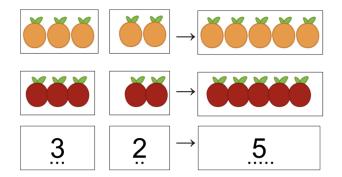
Why study fusion categories?



Sargam Mondal (MIT PRIMES-USA)

Factorizations in G-crossed categories

What is abstraction?

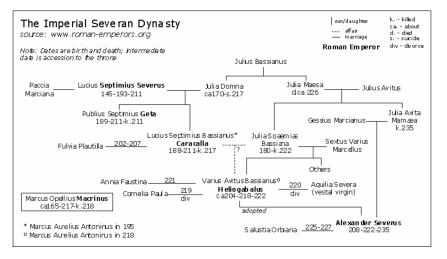


It's much easier to understand numbers as abstractions than doing this calculation over and over again..

October 13th. 2024 MIT PRIMES Confere

Numbers = abstraction for describing quantities in any set.

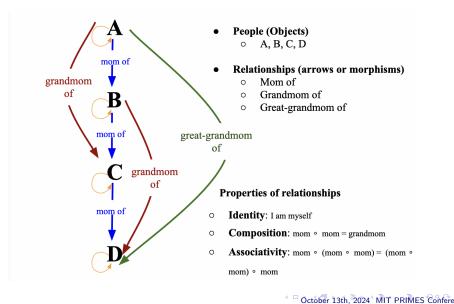
Example of a Category: Family Tree



We do not care about the Imperial Severan Dynasty, we care about ALL family trees.

Sargam Mondal (MIT PRIMES-USA)

What makes up a family tree?



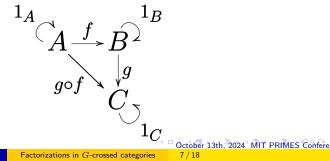
Sargam Mondal (MIT PRIMES-USA)

Factorizations in G-crossed categories

What is a category?

Definition

- A category C consists of:
 - A set of objects
 - For any two objects A and B, a set of arrows (morphisms) between them, $\mathcal{C}(A, B)$, where
 - Associative composition
 - Identity morphism for each object



Factorizations in G-crossed categories

By default, the only operation we have in categories is composition of morphisms. What if we want to add or multiply in categories?

- Abelian (\oplus) category: objects and morphisms can be *added* with \oplus .
 - Object X is **simple** if it has no subobjects except the zero object or itself. (simples = primes)
 - Category is **semisimple** if every object is the direct sum of simple objects. (semisimple = prime factorization exists)
- Monoidal (\otimes) category: category with a multiplication operation \otimes
 - Associativity condition on \otimes
- A fusion category is a semisimple category with addition (⊕) and multiplication (⊗) with finitely many simple objects.

Isomorphism Classes:

- Each class is a group of objects that are isomorphic, or essentially equivalent.
- Modding out for categories.
- $Irr(\mathcal{C})$: Isomorphism classes of simple objects

Consider remainders when dividing integers by 5 ($\mathbb{Z}/5\mathbb{Z}$). The isomorphism classes here are $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$, where:

$$\overline{0} = \{\dots, -10, -5, 0, 5, 10, \dots\}$$

$$\overline{1} = \{\dots, -9, -4, 1, 6, 11, \dots\}$$

$$\overline{2} = \{\dots, -8, -3, 2, 7, 12, \dots\}$$

$$\overline{3} = \{\dots, -7, -2, 3, 8, 13, \dots\}$$

$$\overline{4} = \{\dots, -6, -1, 4, 9, 14, \dots\}$$

Graded fusion categories and universal grading

$$S = \sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n$$

Let C be a fusion category and G a finite group. A *G*-grading on C is a decomposition of C into a direct sum of subcategories

$$\mathcal{C} = \sum_{g \in G} \mathcal{C}_g = \bigoplus_{g \in G} \mathcal{C}_g = \mathcal{C}_{g_1} \oplus \mathcal{C}_{g_2} \oplus \cdots \oplus \mathcal{C}_{g_k}$$

Summation is building up, grading is breaking down.

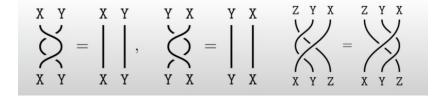
The universal grading group $U(\mathcal{C})$ is an 'omnipotent' group:

- It grades any category.
- Any G-grading of a category C is determined by the grading induced by U(C) and the relationship between U(C) and G.

Group Actions and Braidings

- Group action: Each element of G becomes a function on C, so $g_k\mapsto f_{g_k}$, where $f_{g_k}:\mathcal{C}\to\mathcal{C}$
- \bullet Braiding: Twisting of strands, swapping order of objects under \otimes such that some associativity conditions hold.

• Map
$$c_{x,y}: x \otimes y \mapsto y \otimes x$$



A *G*-crossed braided fusion category is a fusion category C equipped with an action of *G* on *C*, a grading $C = \bigoplus_{g \in G} C_g$, and *G*-braiding isomorphisms

$$c_{X,Y}: X \otimes Y \xrightarrow{\sim} g(Y) \otimes X$$
 for $g \in G, \ X \in \mathcal{C}_g$, and $Y \in \mathcal{C}$.

October 13th. 2024 MIT PRIMES Confere

Some additional structural conditions also must hold.

- Let \mathcal{B} be a fusion category and let \mathcal{A}, \mathcal{C} be fusion subcategories of \mathcal{B} .
- \mathcal{B} is an exact factorization of \mathcal{A} and \mathcal{C} , denoted by $\mathcal{B} = \mathcal{A} \bullet \mathcal{C}$, if every simple object of \mathcal{B} can be written uniquely as $A \otimes C$ with $A \in Irr(\mathcal{A})$ and $C \in Irr(\mathcal{C})$.

October 13th, 2024 MIT PRIMES Confere

Exact Factorizations for the Universal Grading

Let $\mathcal{B} = \mathcal{A} \cdot \mathcal{C}$ be an exact factorization of fusion categories. If \mathcal{B} is $U(\mathcal{B})$ -crossed braided, then \mathcal{A} is $U(\mathcal{A})$ -crossed braided and \mathcal{C} is $U(\mathcal{C})$ -crossed braided.

Fusion rings are skeletons of fusion categories.

Exact Factorizations for the Universal Grading (Rings)

If $R=A\cdot C$ is an exact factorization of fusing rings and R is a U(R)-crossed fusion ring, then A is a U(A)-crossed fusion ring and C is a U(C)-crossed fusion ring

Sargam Mondal (MIT PRIMES-USA)

Our Results (continued)

Let $\mathcal{B} = \mathcal{A} \cdot \mathcal{C}$ be an exact factorization. Define $H = \{g \in G, \mathcal{B}_g \cap \mathcal{A} \neq 0\}$ and $K = \{g \in G, \mathcal{B}_g \cap \mathcal{C} \neq 0\}.$

Factorizations for the General Case

G = HK is a factorization.

Question

Is there an exact factorization of the trivial components of the gradings, $\mathcal{B}_e = \mathcal{A}_e \cdot \mathcal{C}_e$?

Corollary

If the above holds true, then G = HK is an exact factorization.

Results

Deligne Product

Suppose $\mathcal{B} = \mathcal{A} \boxtimes \mathcal{C}$, where \mathcal{A} is *H*-crossed braided and \mathcal{C} is *K*-crossed braided. Then \mathcal{B} is $H \times K$ -crossed braided.

Crossed Product

 $\mathcal{C} \rtimes G$ is G-crossed braided if and only if \mathcal{C} is braided and ρ_g is isomorphic to $\mathrm{id}_{\mathcal{C}}$ for all $g \in G$.

Definition 5.2. Let \mathcal{A} and \mathcal{C} be fusion categories and G a finite group. Assume that G acts categorically by tensor autoequivalences on \mathcal{A} and \mathcal{C} has faithful G-grading. We define the *generalized semidirect product* $\mathcal{A} \rtimes \mathcal{C}$ as the fusion subcategory of $(\mathcal{A} \rtimes G) \boxtimes \mathcal{C}$ generated by the elements

 $(A \# |C|) \boxtimes C,$ $A \in \operatorname{Irr}(\mathcal{A}), C \in \operatorname{Irr}(\mathcal{C}).$

Remark 5.3. Notice that $\mathcal{A} \rtimes \mathcal{C}$ is as an abelian category $\mathcal{A} \boxtimes \mathcal{C}$. In this viewpoint we can denote the simple objects of $\mathcal{A} \rtimes \mathcal{C}$ by $\mathcal{A} \# \mathcal{C}$, $\mathcal{A} \in \operatorname{Irr}(\mathcal{A})$, $\mathcal{C} \in \operatorname{Irr}(\mathcal{C})$.

I would like to thank

• My mentors Prof. Julia Plavnik and Prof. Monique Müller for their invaluable feedback, guidance, and encouragement.

October 13th 2024 MIT PRIMES Confere

- The MIT Math Department and the MIT PRIMES program for providing me with the opportunity to work on this project.
- My family for their support.

Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V. *On braided fusion categories I.* arXiv:0906.0620.

- Etingof, P., Gelaki, S., Nikshych, D. and Ostrik, V. *Tensor categories*, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, (2015).
- Etingof, P., Nikshych, D., Ostrik, V. *On fusion categories*, Ann. of Math. **162** (2005), 581–642.

Gelaki, S. *Exact factorizations and extensions of fusion categories*, J. Algebra **480**, 505–518 (2017).

Müller, M., Peña Pollastri, H.M., Plavnik, J. On bicrossed product of fusion categories and exact factorizations. arXiv:2405.10207.